948 research outputs found

    A Comparison of Weak Lensing Measurements From Ground- and Space-Based Facilities

    Get PDF
    We assess the relative merits of weak lensing surveys, using overlapping imaging data from the ground-based Subaru telescope and the Hubble Space Telescope (HST). Our tests complement similar studies undertaken with simulated data. From observations of 230,000 matched objects in the 2 square degree COSMOS field, we identify the limit at which faint galaxy shapes can be reliably measured from the ground. Our ground-based shear catalog achieves sub-percent calibration bias compared to high resolution space-based data, for galaxies brighter than i'~24.5 and with half-light radii larger than 1.8". This selection corresponds to a surface density of ~15 galaxies per sq arcmin compared to ~71 per sq arcmin from space. On the other hand the survey speed of current ground-based facilities is much faster than that of HST, although this gain is mitigated by the increased depth of space-based imaging desirable for tomographic (3D) analyses. As an independent experiment, we also reconstruct the projected mass distribution in the COSMOS field using both data sets, and compare the derived cluster catalogs with those from X-ray observations. The ground-based catalog achieves a reasonable degree of completeness, with minimal contamination and no detected bias, for massive clusters at redshifts 0.2<z<0.5. The space-based data provide improved precision and a greater sensitivity to clusters of lower mass or at higher redshift.Comment: 12 pages, 8 figures, submitted to ApJ, Higher resolution figures available at http://www.astro.caltech.edu/~mansi/GroundvsSpace.pd

    Identification of putative domain linkers by a neural network – application to a large sequence database

    Get PDF
    BACKGROUND: The reliable dissection of large proteins into structural domains represents an important issue for structural genomics/proteomics projects. To provide a practical approach to this issue, we tested the ability of neural network to identify domain linkers from the SWISSPROT database (101602 sequences). RESULTS: Our search detected 3009 putative domain linkers adjacent to or overlapping with domains, as defined by sequence similarity to either Protein Data Bank (PDB) or Conserved Domain Database (CDD) sequences. Among these putative linkers, 75% were "correctly" located within 20 residues of a domain terminus, and the remaining 25% were found in the middle of a domain, and probably represented failed predictions. Moreover, our neural network predicted 5124 putative domain linkers in structurally un-annotated regions without sequence similarity to PDB or CDD sequences, which suggest to the possible existence of novel structural domains. As a comparison, we performed the same analysis by identifying low-complexity regions (LCR), which are known to encode unstructured polypeptide segments, and observed that the fraction of LCRs that correlate with domain termini is similar to that of domain linkers. However, domain linkers and LCRs appeared to identify different types of domain boundary regions, as only 32% of the putative domain linkers overlapped with LCRs. CONCLUSION: Overall, our study indicates that the two methods detect independent and complementary regions, and that the combination of these methods can substantially improve the sensitivity of the domain boundary prediction. This finding should enable the identification of novel structural domains, yielding new targets for large scale protein analyses

    Wavelength Dependent PSFs and their impact on Weak Lensing Measurements

    Full text link
    We measure and model the wavelength dependence of the PSF in the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) survey. We find that PSF chromaticity is present in that redder stars appear smaller than bluer stars in the g,r,g, r, and ii-bands at the 1-2 per cent level and in the zz and yy-bands at the 0.1-0.2 per cent level. From the color dependence of the PSF, we fit a model between the monochromatic PSF trace radius, RR, and wavelength of the form R(λ)λbR(\lambda)\propto \lambda^{b}. We find values of bb between -0.2 and -0.5, depending on the epoch and filter. This is consistent with the expectations of a turbulent atmosphere with an outer scale length of 10100\sim 10-100 m, indicating that the atmosphere is dominating the chromaticity. We find evidence in the best seeing data that the optical system and detector also contribute some wavelength dependence. Meyers and Burchat (2015) showed that bb must be measured to an accuracy of 0.02\sim 0.02 not to dominate the systematic error budget of the Large Synoptic Survey Telescope (LSST) weak lensing (WL) survey. Using simple image simulations, we find that bb can be inferred with this accuracy in the rr and ii-bands for all positions in the LSST field of view, assuming a stellar density of 1 star arcmin2^{-2} and that the optical PSF can be accurately modeled. Therefore, it is possible to correct for most, if not all, of the bias that the wavelength-dependent PSF will introduce into an LSST-like WL survey.Comment: 14 pages, 10 figures. Submitted to MNRAS. Comments welcom

    Subaru Suprime-Cam Weak Lensing Survey over 33 deg^2

    Get PDF
    Under the currently popular CDM model, mass plays the major role in evolution of large scale structure of the universe. In order to examine the paradigm based on observations, it ould be ideal to use purely mass selected object catalog. Weak lensing surveys enable a blind search of cluster scale objects, and thus could provide such catalogs. We are working on a weak lensing survey using Subaru Prime Focus Camera (Suprime-Cam). In this note, we introduce our survey strategy, and the status as well as the performance of Suprime-Cam as a weak lensing surveyor

    Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of The Physiological Society for personal use, not for redistribution. The definitive version was published in Journal of Physiology 589 (2011): 4903-4920, doi:10.1113/jphysiol.2011.216564.Synaptically activated changes in dendritic [Ca2+]i affect many important physiological processes including synaptic plasticity and gene expression. The location, magnitude, and time course of these changes can determine which mechanisms are affected. Therefore, it is important to understand the processes that control and modulate these changes. One important source is Ca2+ entering through voltage gated Ca2+ channels opened by action potentials backpropagating over the dendrites (bAPs). Here we examine how [Ca2+]i changes, caused by regenerative Ca2+ release from internal stores (Ca2+ waves) or by regenerative Ca2+ entry through NMDA receptors (NMDA spikes) affect subsequent bAP evoked [Ca2+]i changes. These large [Ca2+]i increases suppressed the bAP signals in the regions where the preceding [Ca2+]i increases were largest. The suppression was proportional to the magnitude of the large [Ca2+]i change and was insensitive to kinase and phosphatase inhibitors, consistent with suppression due to Ca2+ dependent inhibition of Ca2+ channels.Supported in part by NIH grant NS-016295.2012-08-1

    Deposition of hydroxyapatite on SiC nanotubes in simulated body fluid

    Get PDF
    SiC nanotubes can become candidate reinforcement materials for dental and orthopedic implants due to their light weight and excellent mechanical properties. However, the development of bioactive SiC materials has not been reported. In this study, hydroxyapatites were found on SiC nanotubes treated with NaOH and subsequently HCl solution after soaking in simulated body fluid. On the other hand, hydroxyapatites did not deposit on as-received SiC nanotubes, the SiC nanotubes with NH4OH solution treatment and SiC bulk materials with NaOH and subsequently HCl solution treatment. Therefore, we succeeded in the development of bioactive SiC nanotubes by downsizing SiC materials to nanometer size and treating with NaOH and subsequently HCl solutions for the first time
    corecore